Large Language Models are Zero-Shot Rankers for Recommender Systems |
#paper |
Semantic Product Search for Matching Structured Product Catalogs in E-Commerce |
#paper |
Crossed Feature |
#interview #deep-learning |
Feature Hashing |
#interview #deep-learning |
logarithm |
|
Sequence-to-Sequence Model |
|
Causal Language Modeling |
#interview #nlp |
Decoder Only Transformer |
#interview #nlp |
Encoder Only Transformer |
#interview #nlp |
ML Case Study or ML Design |
#interview |
Time Complexity of ML Algos |
#interview #machine-learning |
MRR |
#interview #retrieval |
F-Beta@K |
#interview #retrieval |
Recall@K |
#interview #retrieval |
Precision@K |
#interview #retrieval |
Retrieval Metrics |
#interview #retrieval |
Top-K in Retrieval System |
|
PyTorch Refresher |
#interview #deep-learning |
Reno Talk @UMBC on Scale-2024 |
|
Molmo and PixMo |
#paper |
What is More Likely to Happen Next |
#Computer-Science---Computation-and-Language #Computer-Science---Artificial-Intelligence #Computer-Science---Computer-Vision-and-Pattern-Recognition #paper |
Fine Tuning Large Language Models |
#nlp |
OpenPI-C |
#paper |
MultiVENT |
#multimodal #paper #dataset |
Home |
|
3 key question in data visualization |
#interview #visualization |
Merge K-sorted List |
#data-structures #interview |
Time Complexity of ML Models |
#machine-learning #interview |
COIN |
#paper |
Instructional Websites |
#dataset |
matplotlib functions |
|
matplotlib legend |
#visualization #interview |
Essential Visualizations |
#visualization #interview |
data visualization |
#visualization #interview |
Self Attention vs. Cross Attention |
|
MM-LLMs |
|
Layer Normalization |
#deep-learning #interview |
Odds Ratio |
#statistics #interview |
Label Encoding |
#machine-learning #interview |
Log (Odds Ratio) |
#statistics #interview |
Amazon Leadership Principles |
#interview #behavioral |
PyTorch Loss Functions |
#pytorch #machine-learning |
Probability vs. Likelihood |
#probability #interview |
spacy-syntactic-dependency |
#nlp #spacy |
Histogram |
#interview #statistics |
Exponential Distribution |
#interview #statistics |
CNN |
#deep-learning #interview #vision |
DBScan Clustering |
#machine-learning #interview |
Gradient Descent |
#machine-learning #interview |
Hierarchical Clustering |
#machine-learning #interview |
K-means Clustering |
#machine-learning #interview |
RNN |
#deep-learning #interview |
Bias & Variance |
#machine-learning #interview #evaluation |
ROC Curve |
#machine-learning #interview #evaluation |
AUC Score |
#machine-learning #interview #evaluation |
L2 or Ridge Regression |
#machine-learning #interview |
L1 or Lasso Regression |
#machine-learning #interview |
Multi Layer Perceptron |
#machine-learning #interview |
Co-Variance |
#interview #statistics |
Line Equation |
#math #interview |
LSTM |
#deep-learning #interview |
GRU |
#deep-learning #nlp #interview |
BLEU Score |
#nlp #deep-learning #interview |
Tanh |
#deep-learning #activation-function #interview |
Domain vs. Codomain vs. Range |
#math |
One Class Gaussian |
#machine-learning #interview |
Multivariate Normal Distribution |
#statistics #interview |
Support Vector |
#machine-learning #interview |
Margin in SVM |
#machine-learning #interview |
Random Forest |
#machine-learning #interview |
Convex vs Nonconvex Function |
#math #interview |
Saddle Points |
#machine-learning #interview |
Local Minima |
#machine-learning |
Global Minima |
#machine-learning |
Softsign |
#activation-function #deep-learning #interview |
Softplus |
#deep-learning #activation-function #interview |
Log-cosh Loss |
#loss-in-ml #machine-learning #deep-learning #interview |
bisect_left vs. bisect_right |
|
Log (Odds) |
#statistics #interview |
Adaboost |
#machine-learning #interview |
Ensemble Learning |
#machine-learning #interview |
Stacking or Meta Model in Ensemble Learning |
#machine-learning #interview |
Bagging |
#machine-learning #interview |
Boosting |
#machine-learning #interview |
Machine Learning Algorithm Selection |
#machine-learning #deep-learning #interview |
Neural Network |
#deep-learning #interview |
Normal Distribution |
#interview #statistics |
Activation Function |
#machine-learning #interview #activation-function |
How To 100M Learning Text Video |
#paper #nlp #dataset |
Logistic Regression |
#machine-learning #interview |
Meteor Score |
#nlp #deep-learning #interview |
AdaGrad |
#deep-learning #interview |
Decision Tree (Classification) |
#machine-learning #interview |
ROUGE-L Score |
#deep-learning #nlp #interview |
ROUGE-LSUM Score |
#deep-learning #nlp #interview |
ROUGE-N Score |
#nlp #deep-learning #interview |
Sub-word Tokenizer |
#deep-learning #nlp #interview |
Kernel in SVM |
#machine-learning #interview |
Sub-sampling in Word2Vec |
#deep-learning #nlp #interview |
Word Tokenizer |
#deep-learning #nlp #interview |
Backward Feature Elimination |
#machine-learning #interview |
Area Under Precision Recall Curve (AUPRC) |
#machine-learning #interview #evaluation |
Continuous Bag of Words |
#deep-learning #nlp #interview |
ELMo Embeddings |
#nlp #interview |
Foundation Model |
#deep-learning #interview |
Homonym or Polysemy |
#nlp #interview |
Neural Network Normalization |
#deep-learning #interview |
Stochastic Gradient Descent (SGD) |
#machine-learning #interview |
Word Embeddings |
#deep-learning #nlp #interview |
AdaDelta |
#machine-learning #interview |
Alternative Hypothesis |
#statistics #interview |
Adam |
#deep-learning #interview |
BERT Embeddings |
#nlp #interview |
Byte Pair Encoding (BPE) |
#deep-learning #interview #nlp |
Byte Level BPE |
#deep-learning #nlp #interview |
Challenges of NLP |
#nlp #interview |
Co-occurrence based Word Embeddings |
#nlp #interview |
Character Tokenizer |
#deep-learning #nlp #interview |
Contextualized Word Embeddings |
#nlp #interview |
Count based Word Embeddings |
#deep-learning #interview |
Decoding Strategies |
#nlp #interview |
Extrinsic Evaluation |
#evaluation #nlp #interview |
FastText Embedding |
#nlp #interview |
Forward Feature Selection |
#machine-learning #interview |
Gradient Clipping |
#deep-learning #interview |
Group Normalization |
#deep-learning #interview |
Gumbel Softmax |
#deep-learning #interview |
GloVe Embedding |
#nlp #interview |
Intrinsic Evaluation |
#evaluation #nlp #interview |
Jaccard Similarity |
#statistics #interview |
Jaccard Distance |
#statistics #interview |
Leaky ReLU |
#deep-learning #activation-function #interview |
Min Max Normalization |
#deep-learning #interview |
Multiset |
#math |
Negative Sampling |
#deep-learning #nlp #interview |
Nesterov Accelerated Gradient (NAG) |
#deep-learning #interview |
One Hot Vector |
#deep-learning #nlp #interview |
Polynomial Regression |
#machine-learning #interview |
Precision Recall Curve (PRC) |
#machine-learning #interview #evaluation |
RMSProp |
#deep-learning #interview |
Reinforcement Learning from Human Feedback (RLHF) |
#nlp #deep-learning #interview |
Self-Supervised Learning |
#deep-learning #interview |
SentencePiece Tokenization |
#nlp #deep-learning #interview |
Skip Gram Model |
#nlp #deep-learning #interview |
Stop Words |
#nlp #interview |
Stochastic Gradient Descent with Momentum |
#deep-learning #interview |
Tokenizer |
#deep-learning #nlp #interview |
True Negative Rate |
#evaluation #machine-learning #interview |
Type 1 Error vs. Type 2 Error |
#machine-learning #interview #evaluation |
Word2Vec Embedding |
#nlp #interview |
WordPiece Tokenization |
#deep-learning #nlp #interview |
Recent Notes |
|
Sources of Uncertainty |
#probability |
Second Order Derivative or Hessian Matrix |
#math |
ReLU |
#machine-learning #interview #activation-function |
Greedy Decoding |
#deep-learning #interview #nlp |
Feature Engineering |
#machine-learning #interview |
F-Beta Score |
#evaluation #machine-learning #interview |
Gini Impurity |
#machine-learning #interview |
Entropy and Information Gain |
#machine-learning #interview |
Binary Cross Entropy |
#machine-learning #interview |
Batch Normalization |
#deep-learning #interview |
R-squared Value |
#statistics #interview #evaluation |
Behavioral Interview |
#interview |
Questions to ask in a Interview? |
#interview |
DS & Algo Interview |
#interview #data-structures #algorithms |
Mean Squared Logarithmic Error (MSLE) |
#machine-learning #interview #evaluation |
Multivariate Linear Regression |
#machine-learning #interview |
Multivariable Linear Regression |
#machine-learning #interview |
p-value |
#statistics #interview |
Null Hypothesis |
#interview #statistics |
Elastic Net Regression |
#machine-learning #interview |
Unsupervised Learning |
#machine-learning #interview |
ML Interview |
#math #statistics #probability #visualization #machine-learning #deep-learning #loss-in-ml #evaluation #interview #nlp #vision |
Normalization |
#machine-learning #deep-learning |
Posterior Probability |
#probability #interview |
Dropout |
#deep-learning #interview |
Discriminative vs. Generative Models |
#deep-learning #interview |
Exploding Gradient |
#deep-learning #interview |
Negative Log Likelihood |
#interview #probability |
TF-IDF |
#machine-learning #interview #nlp |
Confusion Matrix |
#machine-learning #interview #evaluation |
Mini Batch SGD |
#machine-learning #interview |
Surprise |
#machine-learning #interview |
Naive Bayes |
#machine-learning #interview |
Perceptron |
#machine-learning #interview |
K-means vs. Hierarchical |
#machine-learning #interview |
K-nearest Neighbor (KNN) |
#machine-learning #interview |
How To Write a Paper |
#write-paper #tutorial #paper |
How to Read a Paper |
#paper |
Deep Learning by Ian Goodfellow |
#deep-learning #book |
Advanced NLP with Scipy |
#nlp #spacy #tutorial |
How to prepare for Behavioral Interview |
#interview |
Training a Deep Neural Network |
#deep-learning #interview |
Bag of Words |
#nlp #interview |
Softmax |
#machine-learning #interview #activation-function |
Mutual Information |
#statistics #interview |
Splitting tree in Decision Tree |
#machine-learning #interview |
Standardization or Normalization |
#machine-learning #deep-learning #interview |
Support Vector Machine (SVM) |
#machine-learning #interview |
Maximal Margin Classifier |
#machine-learning #interview |
Three Way Partioning |
#algorithms #interview |
Feature Preprocessing |
#interview #deep-learning |
How to Choose Kernel in SVM |
#machine-learning #interview |
Cosine Similarity |
#machine-learning #statistics #interview |
False Negative Error |
#machine-learning #interview |
Dynamic Programming (DP) in python |
#interview #algorithms #python |
Data Imputation |
#machine-learning #interview |
Multi Label Cross Entropy |
#machine-learning #interview |
Contrastive Learning |
#deep-learning #nlp #interview |
Averaging in Ensemble Learning |
#machine-learning #interview |
Recall |
#machine-learning #interview #evaluation |
Precision |
#machine-learning #interview #evaluation |
True Positive Rate |
#machine-learning #interview #evaluation |
False Positive Rate |
#machine-learning #interview #evaluation |
Gradient Boost (Regression) |
#machine-learning #interview |
Gradient Boosting |
#machine-learning #interview |
Decision Tree (Regression) |
#machine-learning #interview |
Decision Tree |
#machine-learning #interview |
Simple Linear Regression |
#machine-learning #interview |
Independent Variable |
#machine-learning #interview |
Dependent Variable |
#interview #machine-learning |
Linear Regression |
#machine-learning #interview |
Adjusted R-squared Value |
#interview #statistics #evaluation |
Marginal Probability |
#interview #probability |
Matrices |
#linear-algebra #math |
Maximum Likelihood |
#probability #interview |
Mean Absolute Error (MAE) |
#evaluation #machine-learning #deep-learning #interview #loss-in-ml |
Mean Absolute Percentage Error (MAPE) |
#machine-learning #deep-learning #loss-in-ml #interview |
Mean |
#interview #statistics |
Median |
#interview #statistics |
Merge Overlapping Intervals |
#algorithms #interview |
Mode |
#statistics #interview |
Model Based vs. Instance Based Learning |
#machine-learning #interview |
Multi Class Cross Entropy |
#interview #machine-learning #loss-in-ml |
N-gram Method |
#nlp #interview |
Odds |
#statistics #interview |
One Class Classification |
#machine-learning #interview |
One vs One Multi Class Classification |
#machine-learning #interview |
Overcomplete Autoencoder |
#deep-learning #nlp #interview |
Oversampling |
#machine-learning #interview |
PCA vs. Autoencoder |
#deep-learning #machine-learning #interview |
Padding in CNN |
#deep-learning #vision #interview |
Parameter vs. Hyperparameter |
#machine-learning #deep-learning #interview |
Perplexity |
#nlp #deep-learning #interview #evaluation |
Pooling |
#deep-learning #interview |
Population |
#statistics #interview |
One vs Rest or One vs All Multi Class Classification |
#machine-learning #interview |
Prior Probability |
#probability #interview |
Principal Component Analysis (PCA) |
#machine-learning #interview |
Probability Distribution |
#probability #interview |
Mean Squared Error (MSE) |
#machine-learning #loss-in-ml #interview #evaluation |
Problem Solving Algorithm Selection |
#algorithms #data-structures #interview |
Probability Density Function |
#probability #interview |
Probability Mass Function |
#probability #interview |
Quintile or Percentile |
#statistics #interview |
Quotient Rule or Differentiation of Division |
#math #interview |
Random Variable |
#probability #interview |
Regularization |
#deep-learning #interview |
Reinforcement Learning |
#deep-learning #machine-learning #interview |
Root Mean Squared Error (RMSE) |
#evaluation #machine-learning #deep-learning #interview |
Root Mean Squared Logarithmic Error (RMSLE) |
#machine-learning #deep-learning #evaluation #interview |
SVC |
#machine-learning #interview |
Sensitivity |
#machine-learning #interview #evaluation |
Semi-supervised Learning |
#machine-learning #interview |
Soft Margin in SVM |
#machine-learning #interview |
Some Common Behavioral Questions |
#interview |
Specificity |
#machine-learning #interview #evaluation |
Standard deviation |
#interview #statistics |
Standardization |
#machine-learning #deep-learning #interview |
Statistical Significance |
#statistics #interview |
Stump |
#machine-learning #interview |
Stride in CNN |
#deep-learning #vision #interview |
Supervised Learning |
#machine-learning #interview |
Swallow vs. Deep Learning |
#machine-learning #deep-learning #interview |
Triplet Loss |
#deep-learning #loss-in-ml #interview |
Undercomplete Autoencoder |
#deep-learning #nlp #interview |
Undersampling |
#machine-learning #interview |
Variance |
#interview #statistics |
conditionally-independent-joint-distribution |
#probability |
determinant |
#linear-algebra |
diagonal-matrix |
#linear-algebra |
doing-literature-review |
|
eigenvalue-eigenvector |
#linear-algebra |
frobenius-norm |
#linear-algebra |
fully-independent-join-distribution |
#probability |
fully-joint-joint-distribution |
#probability |
identity-matrix |
#linear-algebra |
joint-distribuition |
#probability |
jupyter-notebook-on-server |
#deep-learning |
lp-norm |
#linear-algebra |
max-norm |
#linear-algebra |
norm |
#linear-algebra |
orthogonal-matrix |
#linear-algebra |
orthonormal-vector |
#linear-algebra |
scalar |
#linear-algebra #math |
spacy-doc-object |
#nlp #spacy |
spacy-doc-span-token |
#nlp #spacy |
spacy-matcher |
#spacy #nlp |
spacy-explanation-of-labels |
#nlp #spacy |
spacy-named-entities |
#nlp #spacy |
spacy-operator-quantifier |
#spacy #nlp |
spacy-pattern |
#spacy #nlp |
spacy-pos |
#nlp #spacy |
spacy-pipeline |
#nlp #spacy |
spacy-semantic-similarity |
#nlp #spacy |
vector |
#linear-algebra #math |
unit-vector |
#linear-algebra |
trace-operator |
#linear-algebra |
Accuracy |
#machine-learning #interview #evaluation |
Autoencoder for Denoising Images |
#deep-learning #vision #interview |
Bayesian Optimization Hyperparameter Finding |
#deep-learning #machine-learning #interview |
Bayes Theorem |
#probability #interview |
Bidirectional RNN or LSTM |
#nlp #deep-learning #interview |
Binning or Bucketing |
#machine-learning #deep-learning #interview |
Binomial Distribution |
#probability #statistics #interview |
Beam Search |
#deep-learning #nlp #interview |
Causality vs. Correlation |
#statistics #interview |
Chain Rule |
#math #interview |
Collinearity |
#machine-learning #statistics #interview |
Conditional Probability |
#interview #probability |
Contrastive Loss |
#deep-learning #loss-in-ml #interview |
Continuous Random Variable |
#probability #interview |
Cross Entropy |
#machine-learning #interview |
Cross Validation |
#machine-learning #interview |
Curse of Dimensionality |
#machine-learning #interview |
Data Augmentation |
#machine-learning #interview |
Decision Boundary |
#machine-learning |
Derivative |
#math #machine-learning #interview |
Differentiation of Product |
#math #interview |
Differentiation |
#math #machine-learning #interview |
Discrete Random Variable |
#probability #interview |
Dying ReLU |
#machine-learning #interview #deep-learning |
Eigendecomposition |
#linear-algebra #math |
Entropy |
#machine-learning #interview #loss-in-ml |
Estimated Standard Deviation |
#interview |
Estimated Variance |
#statistics #interview |
Estimated Mean |
#interview #statistics |
Euclidian Norm |
#math #interview |
Expected Value for Discrete Events |
#probability #interview |
Expected Value |
#probability #interview |
Density Sparse Data |
#machine-learning #interview |
F1 Score |
#machine-learning #interview #evaluation |
Feature Extraction |
#machine-learning #interview |
Finding Co-relation between two data or distribution |
#statistics #interview |
GBM |
#machine-learning #interview |
Gaussian Distribution |
#machine-learning #interview |
Genetic Algorithm Hyperparameter Finding |
#machine-learning #deep-learning #interview |
Gradient Boost (Classification) |
#machine-learning #interview |
Gradient |
#math #machine-learning #interview |
Grid Search Hyperparameter Finding |
#deep-learning #machine-learning #interview |
Heapq (nlargest or nsmalles) |
#data-structures #interview |
Handling Imbalanced Dataset |
#machine-learning #interview |
Huber Loss |
#loss-in-ml #machine-learning #deep-learning #interview |
How to combine in Ensemble Learning |
#machine-learning #interview |
Hyperparameters |
#deep-learning #interview |
Integration by Parts or Integration of Product |
#math |
interview |
#interview #nlp #cv |
K Fold Cross Validation |
#machine-learning #interview |
Kernel Regression |
#machine-learning #interview |
KL Divergence |
#machine-learning #interview |
L1 vs. L2 Regression |
#machine-learning #deep-learning #interview |
Log Scale |
#statistics #interview |
Likelihood |
#probability #interview |
Logistic Regression vs. Neural Network |
#machine-learning #deep-learning #interview |
Machine Learning vs. Deep Learning |
#machine-learning #deep-learning #interview |
Loss vs. Cost |
#machine-learning #interview |
Majority vote in Ensemble Learning |
#machine-learning #interview |